Share:


Soil compaction with wheels of manure spreader aggregates

    Aneta Marczuk Affiliation
    ; Jan Radek Kamiński Affiliation
    ; Gintas Viselga Affiliation
    ; Vytautas Turla Affiliation
    ; Algirdas Jasinskas Affiliation
    ; Evgenija Ugnenko Affiliation

Abstract

The study focused on the definition of the impact of the parameters of the applied manure spreaders (loading capacity, size of tyres, the number of driving wheels) on the numerical values of the basic exploitation indices and on soil compaction as well. Research tests were carried out on farms of different arable land areas. The scope of the study included questionnaire surveys, laboratory and exploitation tests, comparison evaluation of fertilization units, verification of the acquired results, as well as recommendation for practical use. A significant growth in productivity (from 0.38 to 1.15 ha/h) was observed together with an increase in the loading capacity of the spreaders, but the following indicators were found to have decreased: surface of soil compaction (from 44 to 15%), field loading (from 412 to 165 kN∙km) and grooves volume (from 165 to 67 m3). Four-wheel spreader of 20 t loading capacity has been characterized by two times higher values of field loading indices (357 kN∙km), groove loading (204 kN/m) and groove volume (110 m3) in comparison with a two-heel spreader with a loading capacity of 10 t.


First published online 19 January 2022

Keyword : manure spreader, tractor, traction properties, manure fertilization technology, field loading, soil compaction

How to Cite
Marczuk, A., Kamiński, J. R., Viselga, G., Turla, V., Jasinskas, A., & Ugnenko, E. (2021). Soil compaction with wheels of manure spreader aggregates. Transport, 36(6), 463-473. https://doi.org/10.3846/transport.2021.16285
Published in Issue
Dec 31, 2021
Abstract Views
675
PDF Downloads
641
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adamowicz, R. 2003. Zasady rolnictwa zrownowazonego i ekologicznego – proba porownania, Przegląd Techniki Rolniczej I Leśnej (10): 17–19 (in Polish).

Alekseev, V. V.; Maksimov, I. I.; Maksimov, V. I.; Sjakaev, I. V. 2012. Jenergeticheskaja ocenka mehanicheskogo vozdejstvija na pochvu pochvoobrabatyvajushhih mashin i orudij, Agrarnaja Nauka Evro-Severo-Vostoka (3): 70–72 (in Russian).

Álvaro-Fuentes, J.; López, M. V.; Arrúe, J. L.; Cantero-Martínez, C. 2008. Management effects on soil carbon dioxide fluxes under semiarid Mediterranean conditions, Soil Science Society of America Journal 72(1): 194–200. https://doi.org/10.2136/sssaj2006.0310

ASAE S313.3:1999(R2013). Soil Cone Penetrometer. American Society of Agricultural and Biological Engineers Standard.

Baker, A. T. 2014. Soil compaction and agricultural production: a review, in Proceedings of the International Soil Tillage Research Organisation (ISTRO) Nigeria Symposium, 3–6 November 2014, Akure, Nigeria, 182–187.

Baumhardt, R. L.; Stewart, B. A.; Sainju, U. M. 2015. North American soil degradation: processes, practices, and mitigating strategies, Sustainability 7(3): 2936–2960. https://doi.org/10.3390/su7032936

Berge, H. F. M.; Schröder, J. J.; Olesen, J. E.; Giraldez Cervera, J.-V. 2017. Research for AGRI Committee – Preserving Agricultural Soils in the EU. Policy Department for Structural and Cohesion Policies, European Parliament, Brussels, Belgium. 135 p. Available from Internet: https://www.europarl.europa.eu/RegData/etudes/STUD/2017/601973/IPOL_STU(2017)601973_EN.pdf

Bernik, R.; Benedičič, J.; Duhovnik, J. 2003. Conceptual design of a stable-manure spreader using a mathematical model, Strojniški Vestnik – Journal of Mechanical Engineering 49(11): 538–548.

BS EN 13080:2002. Agricultural Machinery. Manure Spreaders. Environmental Protection. Requirements and Test Methods. British Standard.

BS EN 690:1994+A1:2009. Agricultural Machinery. Manure Spreaders. Safety. British Standard.

Chen, Y.; Cavers, C.; Tessier, S.; Monero, F.; Lobb, D. 2005. Shortterm tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil, Soil and Tillage Research 82(2): 161–171. https://doi.org/10.1016/j.still.2004.06.006

DeJong-Hughes, J.; Moncrief, J. F.; Voorhees, W. B.; Swan, J. B. 2001. Soil Compaction: Causes, Effects and Control. University of Minnesota, MN, US. 16 p. Available from Internet: https://conservancy.umn.edu/handle/11299/55483

Duhovnik, J.; Benedičič, J.; Bernik, R. 2004. Analysis and design parameters for inclined rotors used for manure dispersal on broadcast spreaders for solid manure, Transactions of the ASAE 47(5): 1389−1404. https://doi.org/10.13031/2013.17604

Duiker, S. W. 2005. Effects of Soil Compaction. College of Agricultural Sciences, Pennsylvania State University, PA, US 12 p. Available from Internet: https://extension.psu.edu/effects-of-soil-compaction

Hamza, M. A.; Anderson, W. K. 2005. Soil compaction in cropping systems: a review of the nature, causes and possible solutions, Soil and Tillage Research 82(2): 121–145. https://doi.org/10.1016/j.still.2004.08.009

Jabro, J. D.; Iversen, W. M.; Evans, R. G.; Allen, B. L.; Stevens, W. B. 2014. Repeated freeze-thaw cycle effects on soil compaction in a clay loam in Northeastern Montana, Soil Science Society of America Journal 78(3): 737–744. https://doi.org/10.2136/sssaj2013.07.0280

Jabro, J. D.; Iversen, W. M.; Stevens, W. B.; Evans, R. G.; Mikha, M. M.; Allen, B. L. 2015a. Effect of three tillage depths on sugarbeet response and soil penetrability resistance, Agronomy Journal 107(4): 1481–1488. https://doi.org/10.2134/agronj14.0561

Jabro, J. D.; Stevens, W. B.; Iversen, W. M.; Evans, R. G. 2015b. Spatial and temporal variability of soil penetration resistance transecting sugarbeet rows and inter-rows in tillage systems, Applied Engineering in Agriculture 31(2): 237–246. https://doi.org/10.13031/aea.31.10722

Kamiński, E. 2011. Trendy rozwojowe w mechanizacji nawożenia mineralnego i organicznego: ekspertyza. Instytut Technologiczno-Przyrodniczy w Falentach Mazowiecki Ośrodek Badawczy w Kłudzienku, Warszawa, Polska. 34 s. (in Polish).

Magdoff, F.; Van Es, H. 2021. Building Soils for Better Crops: Ecological Management for Healthy Soils. SARE Outreach. 410 p. Available from Internet: https://www.sare.org/resources/building-soils-for-better-crops/

McBride, R. A.; McLaughlin, N. B.; Veenhof, D. W. 2000. Performance of wheel and track running gear on liquid manure spreaders, Canadian Agricultural Engineering 42(1): 19–25.

McKenzie, R. H. 2010. Agricultural soil compaction: causes and management, Agri-Facts: Practical Information for Alberta’s Agriculture Industry, October 2010, 1–10. Available from Internet: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex13331/$file/510-1.pdf

Osman, K. T. 2013. Soils: Principles, Properties and Management. Springer. 298 p.

PN-82/R-36108:1982. Ciągniki rolnicze – dolny zaczep transportowy – główne wymiary, wymagania i usytuowanie. Polska Norma. (in Polish).

PN-82/R-36107:1982. Ciągniki rolnicze – zaczep rolniczy – główne wymiary, wymagania i usytuowanie. Polska Norma. (in Polish).

Sainju, U.; O’Brien, D. 2013. Cultural practices to maintain soil quality and address climate change, Agricultural Research Magazine, March 2013, 12–14. Available from Internet: https://digitalcommons.unl.edu/usdaagresmag/65

Taghavifar, H.; Mardani, A. 2014. Effect of velocity, wheel load and multipass on soil compaction, Journal of the Saudi Society of Agricultural Sciences 13(1): 57–66. https://doi.org/10.1016/j.jssas.2013.01.004

Trükmann, K.; Reintam, E.; Kuht, J.; Nugis, E.; Edesi, L. 2008. Effect of soil compaction on growth of narrow-leafed lupine, oilseed rape and spring barley on sandy loam soil, Agronomy Research 6(1): 101–108.

Wyłuda, K. 2007. Doskonalenie technologii nawożenia obornikiem w gospodarstwie farmerskim. Rozprawa doktorska. Instytut Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa, Warszawa, Polska. 105 s. (in Polish).

Żebrowska, E.; Marczuk, T. 2014. Soil compaction with wheels of aggregates for fertilization with liquid manure, Agricultural Engineering 150(2): 229–239.