Share:


Investigation of the hydrodynamic processes of a centrifugal pump in a geothermal system

Abstract

The hydrodynamic and thermodynamic processes of geothermal well extraction are investigated and presented in this paper. The paper presents mathematical models for a multi-level centrifugal pump and pipeline system. The mathematical models were used to evaluate gas (nitrogen) emission in water and its effects on hydrodynamic processes. Experimental studies and mathematical modelling showed that the gas content of the fluid increases the pressure and flow pulsations within a centrifugal pump. The variation in the height of the liquid column in extraction has an influence on characteristics of the multistage centrifugal pump used in wells.


First published online 29 March 2016

Keyword : well, geothermal water, multi-level centrifugal pump, physicochemical properties, mathematical models, transportation

How to Cite
Bogdevičius, M., Janutėnienė, J., Didžiokas, R., Razmas, S., Skrickij, V., & Bogdevičius, P. (2018). Investigation of the hydrodynamic processes of a centrifugal pump in a geothermal system. Transport, 33(1), 223-230. https://doi.org/10.3846/16484142.2016.1155079
Published in Issue
Jan 26, 2018
Abstract Views
779
PDF Downloads
550
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aksoy, N. 2007. Optimization of downhole pump setting depths in liquid-dominated geothermal systems: a case study on the Balcova-Narlidere field, Turkey, Geothermics 36(5): 436–458. http://dx.doi.org/10.1016/j.geothermics.2007.07.003

Asuaje, M.; Bakir, F.; Kouidri, S.; Kenyery, F.; Rey, R. 2005. Numerical modelization of the flow in centrifugal pump: volute influence in velocity and pressure fields, International Journal of Rotating Machinery 2005(3): 244–255. http://dx.doi.org/10.1155/IJRM.2005.244

Barrio, R.; Parrondo, J.; Blanco, E. 2010. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points, Computers & Fluids 39(5): 859–870. http://dx.doi.org/10.1016/j.compfluid.2010.01.001

Bogdevičius, M.; Janutėnienė, J.; Razmas, S.; Drakšas, M.; Didžiokas, R.; Nikitin, V. 2014. Investigation of hydrodynamic processes in geothermal plant, in 11th World Congress on Computational Cechanics (WCCM XI), 20–25 July 2014, Barcelona, Spain, 6: 7361–7371.

Bogdevičius, M.; Janutėnienė, J.; Didžiokas, R.; Nikitin, V.; Razmas, S.; Drakšas, M. 2013a. Investigation into the stability of hydrodynamic processes in the depth centrifugal pump and pipeline system, in TRANSBALTICA 2013: Proceedings of the 8th International Scientific Conference, 9–10 May 2013, Vilnius, Lithuania, 1–4.

Bogdevičius, M.; Janutėnienė, J.; Razmas, S.; Drakšas, M. 2013b. Mathematical modeling of hydrodynamic processes in geothermal plant, in V International Conference on Computational Methods for Coupled Problems in Science and Engineering: Coupled Problems 2013, 17–19 June 2013, Ibiza, Spain, 1–7.

García, A.; Espinosa-Paredes, G.; Barragán, R. M. 2002. Effect of non-condensable gases on the flow of water and steam in geothermal wells, Geofísica Internacional 41(4): 377–383.

Shi, W.; Zhou, L.; Lu, W.; Pei, B.; Lang, T. 2013. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width, Chinese Journal of Mechanical Engineering 26(1): 46–52. http://dx.doi.org/10.3901/CJME.2013.01.046

Shojaeefard, M. H.; Tahani M.; Ehghaghi, M. B.; Fallah Ardeshir, H.; Beglari, M. 2012. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid, Computers & Fluids 60: 61–70. http://dx.doi.org/10.1016/j.compfluid.2012.02.028

Stickland, M. T.; Scanlon, T. J.; Blanco-Marigorta, E.; Fernández-Francos, J.; González-Pérez, J.; Santolaria-Morros, C. 2000. Numerical flow simulation in a centrifugal pump with impeller–volute interaction, in Proceedings of the ASME 2000 Fluids Engineering Division Summer Meeting, 11–15 June 2000, Boston, Massachusetts, 1–7.

Yu, B.; Li, C.; Zhang, Z.; Liu, X.; Zhang, J.; Wei, J.; Sun, S.; Huang, J. 2010. Numerical simulation of a buried hot crude oil pipeline under normal operation, Applied Thermal Engineering 30(17–18): 2670–2679. http://dx.doi.org/10.1016/j.applthermaleng.2010.07.016