Share:


Modelling of bone fixation plate from biodegradable magnesium alloy

Abstract

Biodegradable materials are used in two key sectors of orthopaedics – to fabricate bone fixators and scaffolds for bone tissue regeneration. In case of osteosynthesis, fixators made from biodegradable materials disappear from the body after a certain time. So, a necessity of a one more operation for their removal is excluded. In the present study, the acromioclavicular joint osteosynthesis plates made of magnesium alloy (WE43), titanium alloy (Ti-6Al-7Nb) and stainless steel (316L) are compared utilizing the finite element analysis. The research showed that stresses in the magnesium alloy plate were lower, compared to the titanium alloy plate or the stainless steel plate. However, the tensile strength of magnesium is over 2 times lower, as compared to stainless steel and 5 times lower, than titanium alloys. Magnesium alloy is not suitable for manufacturing plates with low thickness (2 and 2.5 mm), because the stresses generated in them exceed the yield strength of the material.


Article in English.


Kaulų lūžių fiksavimo plokštelių iš biodegraduojančio magnio lydinio modeliavimas


Santrauka


Biodegraduojančios medžiagos ortopedijoje naudojamos dviejose pagrindinėse srityse: kaulų fiksatorių ir kaulų regeneravimo karkasų gamyboje. Osteosintezės fiksatoriai iš biodegraduojančių medžiagų po tam tikro laiko organizme ištirpsta. Nereikia daryti pakartotinos operacijos ir juos išimti. Straipsnyje baigtinių elementų metodu lyginamos raktikaulio ir mentės sąnario osteosintezės plokštelės iš magnio lydinio (WE43), titano lydinio (Ti-6Al-7Nb) ir nerūdijančiojo plieno (316L). Tyrimas parodė, kad įtempiai magnio lydinio plokštelėje susidarė mažesni nei titano lydinio ar nerūdijančiojo plieno plokštelėje. Tačiau magnio stiprumo riba yra daugiau kaip perpus mažesnė nei nerūdijančiojo plieno ir net penkis kartus mažesnė nei titano lydinių. Magnio lydinys netinka gaminant mažesnio storio plokšteles (2 ir 2,5 mm), nes juose susidarė įtempiai, didesni už tamprumo ribą.


Reikšminiai žodžiai: biodegraduojančios medžiagos, baigtinių elementų analizė, magnio lydinys.

Keyword : biodegradable materials, bone fixation, finite element analysis, magnesium alloy

How to Cite
Šešok, A., & Vaitiekūnas, M. (2019). Modelling of bone fixation plate from biodegradable magnesium alloy. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 11. https://doi.org/10.3846/mla.2019.7092
Published in Issue
Feb 1, 2019
Abstract Views
3256
PDF Downloads
567
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Beitzel, K., Sablan, N., & Chowaniec, D. M. (2011). Sequential resection of the distal clavicle and its effects on horizontal acromioclavicular. The American Journal of Sports Medicine Joint Translation, 40(3), 681-685. https://doi.org/10.1177/0363546511428880

Chanlalit, C., Shukla, D. V., Fitzsimmons, J. S., An, K. N., & O’Driscoll, S. W. (2012). Stress shielding around radial head prostheses. Journal of Hand Surgery, 37(10), 2118-2125. https://doi.org/10.1016/j.jhsa.2012.06.020

Christensen, F. B., Dalstra, M., Sejling, F., Overgaard, S., & Bunger, C. (2000). Titanium-alloy enhances bone-pedicle screw fixation: Mechanical and histomorphometrical results of titanium-alloy versus stainless steel. European Spine Journal, 9(2), 97-103. https://doi.org/10.1007/s005860050218

Costic, R. S., Labriola, J. E., Rodosky, M. W., & Debski, R. E. (2004). Biomechanical rationale for development of anatomical reconstructions of coracoclavicular ligaments after complete acromioclavicular joint dislocations. The American Journal of Sports Medicine, 32(8), 1929-1936. https://doi.org/10.1177/0363546504264637

Cronskar, M., Rasmussen, J., & Tinnsten, M. (2015). Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate. Computer Methods in Biomechanics and Biomedical Engineering, 18(7), 740-748. https://doi.org/10.1080/10255842.2013.845175

DePuy Synthes (2007). 3.5 mm LCP Clavicle Hook Plates. Retrieved from http://synthes.vo.llnwd.net/o16/LLN-WMB8/US%20Mobile/Synthes%20North%20America/Product%20Support%20Materials/Technique%20Guides/DSUSTRM10161127_3-5mmLCP_ClavHkPl_TG_150dpi.pdf

Goodrich, J. T., Sandler, A. L., & Tepper, O. (2012). A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Child’s Nervous System Journal, 28, 1577-1588. https://doi.org/10.1007/s00381-012-1776-y

Hermawan, H., Ramdan, D., & Djuansjah, J. R. P. (2011). Metals for biomedical applications. Biomedical Engineering – From Theory to Applications, 411-430. https://doi.org/10.5772/19033

Hung, L. K., Su. K. C., Lu, W. H., & Lee, C. H. (2017). Biomechanical analysis of clavicle hook plate implantation with different hook angles in the acromioclavicular joint. International Orthopaedics, 41(8), 1663-1669. https://doi.org/10.1007/s00264-016-3384-z

Ladermann, A., Gueorguiev, B., Stimec, B., Fasel, J., Rothstock, S., & Hoffmeyer, P. (2013). Acromioclavicular joint reconstruction: a comparative biomechanical study of three techniques. Journal of Shoulder Bone and Elbow Surgery, 22, 171-178. https://doi.org/10.1016/j.jse.2012.01.020

Lawrence, R. L., Braman, J. P., Laprade, R. F., & Ludewig, P. M. (2014). Comparison of 3-Dimensional shoulder bone complex kinematics in individuals with and without shoulder bone pain, Part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints. Journal of Orthopaedic & Sports Physical Therapy, 44(9), 636-645. https://doi.org/10.2519/jospt.2014.5339

Lee, C. H., Shih, C. M., Huang, K. C., Chen, K. H., Hung, L. K., & Su, K. C. (2016). Biomechanical analysis of implanted clavicle hook plates with different implant depths and materials in the acromioclavicular joint: A finite element analysis study. Artificial Organs, 40(11), 1062-1070. https://doi.org/10.1111/aor.12679

Lin, C., Ju, C., & Lin, J. C. (2004). Comparison among Mechanical Properties of Investment-Cast c.p. Ti, Ti-6Al-7Nb and Ti15Mo-1Bi Alloys. Materials Transactions, 45(10), 3028-3032. https://doi.org/10.2320/matertrans.45.3028

Qiu, X., Wang., X., Zhang, Y., Zhy, Y-C., Guo, X., & Chen, Y. X. (2016). Anatomical study of the clavicles in a Chinese population. BioMed Research International, 2016. Article ID 6219761. https://doi.org/10.1155/2016/6219761

Sakai, R., Matsuura, T., Tanaka, K., Uchida, K., Nakao, M., & Mabuchi, K. (2014). Comparison of internal fixations for distal clavicular fractures based on loading tests and finite element analyses. The Scientific World Journal, 2014. Article ID 817321. https://doi.org/10.1155/2014/817321

Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable materials for bone repair and tissue engineering applications. Materials, 8(9), 5744-5794. https://doi.org/10.3390/ma8095273

Shih, S. M., Huang, K. C., Pan, C. C., Lee, C. H., & Su, K. C. (2015). Biomechanical analysis of acromioclavicular joint dislocation treated with clavicle hook plates in different lengths. International Orthopaedics, 39(11), 2239-2244. https://doi.org/10.1007/s00264-015-2890-8

Shirurkara, A., Tamboli, A., Jagtap, P. N., Dondapati, S., & Davidson, J. D. (2017). Mechanical behavior of ZM21 magnesium alloy locking plates – an experimental and finite element study. Materials Today: Proceedings, 4(6), 6728-6736. https://doi.org/10.1016/j.matpr.2017.06.448

Sumner, D. R. (2015). Long-term implant fixation and stress-shielding in total hip replacement. Journal of Biomechanics, 48(5), 797-800. https://doi.org/10.1016/j.jbiomech.2014.12.021

Untaroiu, C. D., Duprey, S., Kerrigan, J., Li, Z., Bose, D., & Crandall, J. R. (2009). Experimental and computational investigation of human clavicle response in anterior-posterior loading. Biomedical Sciences Instrumentation, 45(1), 6-11.