Share:


Ecotoxicological evaluation the effects of the safe concentration of wastewater containing phenol on aquatic ecosystems

    Olena Bezverbna Affiliation
    ; Monika Załęska-Radziwiłł Affiliation

Abstract

The aim of this study was to identify the toxicity, determine and verify safe concentration of effluents containing phenol to the aquatic ecosystems on the basis of single- and multispecies ecotoxicological bioassays. Synthetic wastewater imitating municipal sewage showed acute toxicity in relation to all bioindicators and belonged to the third toxicity class. The most sensible organism was Danio rerio, the most resistance organism was Desmodesmus quadricauda. Chronic safe concentration of wastewater containing phenol was 0.63% which corresponded to 0.63 mg/l of phenol. Appointed safe concentration and the one ten times higher than safe were verified in microcosm study, which confirmed that safe concentration did not cause toxic effects. Maximum permissible concentration of phenol in water bodies does not exceed determined concentration in different countries. Proposed research model can be used to determine and verify safe concentrations for aquatic ecosystems of many types of sewage from various industries.

Keyword : phenol, wastewater, toxicity, safe concentration, bioassay, microcosm, water bodies, water pollution

How to Cite
Bezverbna, O., & Załęska-Radziwiłł, M. (2018). Ecotoxicological evaluation the effects of the safe concentration of wastewater containing phenol on aquatic ecosystems. Journal of Environmental Engineering and Landscape Management, 26(1), 57-63. https://doi.org/10.3846/16486897.2017.1347096
Published in Issue
Mar 20, 2018
Abstract Views
1219
PDF Downloads
902
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bazrafshan, E.; Mostafapour, F. K.; Mansourian, H. J. 2013. Phenolic compounds: health effects and its removal from aqueous environments by low cost adsorbents, Health Scope 2(2): 65–66. https://doi.org/10.17795/jhealthscope-12993

Clescerl, L. S.; Greenberg, A. E.; Eaton, A. D. 1999. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association/American Water Works Association/Water Environment Federation. Washington, District of Columbia.

Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption [online], [cited 5 December 1998]. 23 p. Available from Internet: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083

Dz. U. 1482:2014. Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych. Dziennik Ustaw 2014 r. poz. 1482.

EPA/5O5/2-90-001:1991. Technical support Document for Water Quality-Based Toxics Control. Office of Water, United States Environmental protection Agency. Washington, District of Columbia.

Gao, H.; Zhang, S. H.; Xiong, D. Q.; Liu, N.; Gong, W. M.; Wang, Q. 2006. Study on acute toxicities of phenol and aniline to two marine organisms, Marine Environmental Science 25: 33–36.

Grabińska-Łoniewska, A. 1999. Ćwiczenia laboratoryjne z mik­ro­biologii ogólnej. Oficyna Wydawnicza Politechniki Warszawskiej.

Hansch, C.; McCarns, S.; Smith, C.; Dodittle, D. 2000. Comparative Quantitative Structure-Activity Relationship evidence for a free-radical mechanism of phenol-induced toxicity, Chemico-Biological Interactions 127(1): 61–72. https://doi.org/10.1016/S0009-2797(00)00171-X

Hori, T. S. F.; Avilez, I. M.; Inoue, L. K.; Moraes, G. 2006. Metabolical changes induced by chronic phenol exposure in matrinxã Brycon cephalus (Teleostei: Characidae) juveniles, Comparative Biochemistry and Physiology C 143: 67–72. https://doi.org/10.1016/j.cbpc.2005.12.004

Huang, D. S.; Tseng, I. C.; Liou, H. Y.; Huang, C. M. 1996. acute toxicity of cresols to pseudomonas - an initial oxygen-uptake method, Journal of the Chinese Chemical Society 43(5): 439–443. https://doi.org/10.1002/jccs.199600063

ISO 6341:2012(E). Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – Acute toxicity test.

ISO 8692:2012(E). Water quality – Fresh water algal growth inhibition test with unicellular green algae.

Janssen, C. R.; Espiritu E. Q.; Persoone, G. 1993. Evaluation of the new “Enzymatic Inhibition” criterion for rapid toxicity testing with Daphnia magna, in A. M. V. M. Soares, P. Calow (Eds.). Progress in standardization of aquatic toxicity tests. London: Lewis Publishers, 71–81.

Kaiser, K. L.; Palabrica, V. S. 1991. Photobacterium phosphoreum Toxicity Data Index, Water Pollution Research Journal of Canada 26(3): 361–431.

LUMIStox. 1994. Bedienungsanleitung manual. Dr Lange Corporation, Dusseldorf.

Michalowicz, J.; Duda, W. 2007. Phenols-sources and toxicity, Polish Journal of Environmental Studies 16(3): 347–362.

Mohammadi, S.; Kargari, A.; Sanaeepur, H.; Abbassian, K.; Najafi, A.; Mofarrah, E. 2015. Phenol removal from industrial wastewaters: a short review, Desalination and Water Treatment 53(8): 2215–2234. https://doi.org/10.1080/19443994.2014.883327

Moraes, F. D.; Figueiredo, J. S. L.; Rossi, P. A.; Venturini, F. P.; Moraes, G. 2015. Acute toxicity and sublethal effects of phenol on hematological parameters of channel catfish Ictalurus punctatus and pacu Piaractus mesopotamicus, Ecotoxicology and Environmental Contamination 10(1): 31–36. https://doi.org/10.5132/eec.2015.01.05

Nahed S. Gad; Amal S. Saad. 2008. Effect of environmental pollution by phenol on some physiological parameters of Oreochromis niloticus, Global Veterinaria 2(6): 312–319.

Oskarsson, H.; Wiklund, A. K. E.; Thorsén, G.; Danielsson, G.; Kumblad, L. 2014. community interactions modify the effects of pharmaceutical exposure: a microcosm study on responses to propranolol in Baltic Sea coastal organisms, Public Library of Science One 9(4), e93774. https://doi.org/10.1371/journal.pone.0093774

Park, J.-S.; Brown, M. T.; Han, T. 2012. Phenol toxicity to the aquatic macrophyte Lemna paucicostata, Aquatic Toxicology 106: 182–188. https://doi.org/10.1016/j.aquatox.2011.10.004

Persoon, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nałęcz–Jawecki, G.; Tofan, L.; Stephanova, N.; Tothova, L.; Kolar, B. 2003. Praktyczna i prosta klasyfikacja poziomu toksyczności wód pitnych i ścieków przy użyciu systemów Microbiotest, Environmental Toxicology 18: 395–402.

Pishgar, P.; Najafpour, G. D.; Neya, B. N.; Mousavi, N.; Bakhshi, Z. 2014. Effects of organic loading rate and hydraulic retention time on treatment of phenolic wastewater in an anaerobic immobilized fluidized bed reactor, Journal of Environmental Engineering and Landscape Management 22(1): 40–49. https://doi.org/10.3846/16486897.2013.800079

PN-90/C-04610.04:1990. Woda i ścieki. Badania toksyczności zanieczyszczeń dla organizmów wodnych. Oznaczanie toksyczności ostrej na gupiku Lebistes reticulatus Peters [Water and wastewater. Test for toxicity of pollutants to aquatic organisms. Determination of acute toxicity to Lebistes reticulatus Peters]. Polish Standard.

Provisional List. 1993. Acute Lethal (Effective) Concentration 50’s of freshwater toxkits Versus D. Magna and Microtox for a number of inorganic, organic and pharmaceutical compounds. Provisional List – 03/06/93. Materials of the University of Gent.

Riauka, A.; Žemaitaitis, A.; Klimavičiūtė, R.; Skrebiškienė, R.; Ramenyt, R. 2006. Purification and reuse of coloured textile wastewater, Journal of Environmental Engineering and Landscape Management 14(1): 37–45.

Saha, N. C.; Bhunia, F.; Kaviraj, A. 1999. Toxicity of phenol to fish and aquatic ecosystems, Bulletin of Environmental Contamination and Toxicology 63(2): 195–202. https://doi.org/10.1007/s001289900966

SanPiN 4630-88:1988. Sanitamye pravila i notrmy ohrany poverkhnostnyh vod ot zagryazneniya [Sanitary rules and standards for protection of surface water from pollution]. Ukrainian Standard.

Sheedy, B. R.; Lazorchak, J. M.; Grunwald, D. J.; Pickering, Q. H.; Pilli, A.; Hall, D.; Weeb, R. 1991. Effects of pollution on freshwater organisms, Journal of the Water Pollution Control Federation 63: 619–696.

Tisler, T.; Zagorc-Koncan, J. 1997. Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms, Water, Air, and Soil Pollution 97(3): 315–322. https://doi.org/10.1007/BF02407469

Weber, E. 1972. Grundriss der biologischen Statistik für Naturwissenschaftler, Landwirte und Mediziner. VEB Gustav Fischer, Jena, Germany. 674 p.

Weinberger, L.W. 1949. Nitrogen metabolism in the activated sludge process: ScD thesis. Massachusetts Institute of Technology. Cambridge, Massachusetts.

Wiessner, A.; Müller, J. A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Liu, Y. J.; Stottmeister, U. 2014. Environmental pollution by wastewater from brown coal processing – a remediation case study in Germany, Journal of Environmental Engineering and Landscape Management 22(1): 71–83. ttps://doi.org/10.3846/16486897.2013.808640

Zaki, M. S.; Fawzi, O. M.; Shalaby, S. I. 2011. Phenol toxicity affecting hematological changes in catfish (Clarius lazera), Life Science Journal 8(2): 244–248.

Załęska-Radziwiłł, M. 1997. System wyznaczania stężeń bezpiecznych zanieczyszczeń dla biocenoz wodnych na podstawie badań toksykologicznych: Praca doktorska. Politechnika Warszawska.