Share:


LCA of heavy metals leaching from landfilled sewage sludge ash

    Domagoj Nakić Affiliation
    ; Dražen Vouk Affiliation
    ; Mario Šiljeg Affiliation
    ; Anđelina Bubalo Affiliation

Abstract

Quantities of sewage sludge that are thermally treated (mostly incinerated) are increasing, resulting in growing quantities of sewage sludge ash (SSA) which also requires further management. Despite its potential as a resource, it is still largely landfilled. Considering the presence of potentially toxic and hazardous heavy metals in SSA, this paper analyzes how the change in the leaching concentrations of the selected heavy metals from landfilled SSA impacts the environment (air, water, and soil) by the means of LCA. When considering human toxicity potential as impact category, dominant impacts were due to emissions into the air, primarily caused by leaching of selenium and somewhat less cadmium, mercury and nickel. Mercury had a dominant impact when considering the terrestrial ecotoxicity potential impact. In the SSAs obtained from Croatian sludge, molybdenum leaching, along with selenium and mercury, showed a dominant impact. Therefore, due to the high variability of trace elements, detailed analysis of different SSAs is needed.

Keyword : heavy metals, landfills, LCA, leaching, sewage sludge ash

How to Cite
Nakić, D., Vouk, D., Šiljeg, M., & Bubalo, A. (2021). LCA of heavy metals leaching from landfilled sewage sludge ash. Journal of Environmental Engineering and Landscape Management, 29(3), 359-367. https://doi.org/10.3846/jeelm.2021.15594
Published in Issue
Oct 25, 2021
Abstract Views
806
PDF Downloads
498
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Allegrini, E., Butera, S., Kosson, D. S., Van Zomeren, A., Van der Slot, H. A., & Astrup, T. F. (2015). Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection. Waste Management, 38, 474–485. https://doi.org/10.1016/j.wasman.2014.12.018

Areias, I. O. R., Vieira, C. M. F., Colorado, H. A., Dela­qua, G. C. G., Monteiro, S. N., & Azevedo, A. R. G. (2020). Could city sewage sludge be directly used into clay bricks for building construction? A comprehensive case study from Brazil. Journal of Building Engineer-ing, 31, 101374. https://doi.org/10.1016/j.jobe.2020.101374

Chang, Z., Long G., Zhou, J. L., & Ma, C. (2020). Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resources. Conservation and Recycling, 154, 104606. https://doi.org/10.1016/j.resconrec.2019.104606

Chen, C. H., Chiou, I. J, & Wang, K. S. (2006). Sintering effect on cement bonded sewage sludge ash. Cement Concrete and Composites, 28(1), 26–32. https://doi.org/10.1016/j.cemconcomp.2005.09.003

Chen, M., & Lin, D. F. (2009). Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. Journal of Hazardous Materi-als, 162(1), 321–327. https://doi.org/10.1016/j.jhazmat.2008.05.060

Chen, M., Blanc, D., Gautier, M., Mehu, J., & Gourdon, R. (2013). Environmental and technical assessments of potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33(5), 1268–1275. https://doi.org/10.1016/j.wasman.2013.01.004

Chen, Z., & Poon, C. C. (2017). Comparing the use of sewage sludge ash and glass powder in cement mortars. Environmental Technology, 38(11), 1390–1398. https://doi.org/10.1080/09593330.2016.1230652

Chen, Z., Li J. S., & Poon, C. S. (2018). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, 1447–1459. https://doi.org/10.1016/j.jclepro.2017.10.140

Coutand, M., Cyr, M., & Clastres, P. (2006). Use of sewage sludge ash as mineral admixture in mortars. Construction Materials, 159(4), 153–162. https://doi.org/10.1680/coma.2006.159.4.153

Cyr, M., Coutand, M., & Clastres, P. (2007). Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materi-als. Cement and Concrete Research, 37(8), 1278–1289. https://doi.org/10.1016/j.cemconres.2007.04.003

Cyr, M., Idir, R., & Escadeillas, G. (2012). Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. Journal of Hazardous Materials, 243, 193–203. https://doi.org/10.1016/j.jhazmat.2012.10.019

Dhir, R. K., Ghataora, G. S., & Lynn, C. J. (2017). Sewage sludge ash characteristics. In Sustainable construction materials: Sewage sludge ash (1st ed., pp. 69–110). Woodhead Publishing. https://www.sciencedirect.com/science/article/pii/B9780081009871000044?via%3Dihub

Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Man-agement, 33(11), 2328–2340. https://doi.org/10.1016/j.wasman.2013.05.024

Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010). EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash. Waste Management, 30(1), 63–71. https://doi.org/10.1016/j.wasman.2009.09.028

Europäischen Wirtschaftsdienst. (2018). Die neue Klärschlammverordnung: Paradigmenwechsel für die Abwasserentsorgung (Report Klä-rschlamm). Euwid Wasser und Abwasser. EUWID. http://bi-bachlertal.de/wp-content/uploads/2020/01/Euwid-Kl%C3%A4rschlammreport-2018.pdf

Eurostat. (2019). Sewage sludge production and disposal. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_ww_spd&lang=en

Fischer, C., Lehner, M., & Mckinnon, D. L. (2012). Overview of the use of landfill taxes in Europe (Working Paper). European Topic Centre on Sustainable Consumption and Production.

Fontes, C. M. A., Barbosa, M. C., Toledo Filho, R. D., & Goncalves, J. P. (2004). Potentiality of sewage sludge ash as mineral additive in cement mortar and high performance concrete. In Proceedings of the Intern. RILEM Conference on the Use of Recycled Materials in Build-ings and Structures (pp. 797–806). Barcelona, Spain. https://www.researchgate.net/profile/Romildo-Toledo-Filho/publication/228479791_Potentiality_of_sewage_sludge_ash_as_mineral_additive_in_cement_mortar_and_high_performance_concrete/links/02e7e51cb590023011000000/Potentiality-of-sewage-sludge-ash-as-mineral-additive-in-cement-mortar-and-high-performance-concrete.pdf

Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods – A review. Renewable and Sus-tainable Energy Reviews, 12(1), 116–140. https://doi.org/10.1016/j.rser.2006.05.014

Gursel, A. P., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

He, B., & Wang, G. (2019). Is ceramsite the last straw for sewage sludge disposal: A review of sewage sludge disposal by producing ceramsite in China. Water Science & Technology, 80(1), 1–10. https://doi.org/10.2166/wst.2019.223

Krüger, O., & Adam, C. (2015). Recovery potential of German sewage sludge ash. Waste Management, 45, 400–406. https://doi.org/10.1016/j.wasman.2015.01.025

Li, J. S., Xue, Q., Fang, L., & Poon, C. S. (2016). Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods. Waste Management, 64, 161–170. https://doi.org/10.1016/j.wasman.2017.03.033

Lin, D.-F., & Weng, C.-H. (2001). Use of sewage sludge ash as brick material. Journal of Environmental Engineering, 127(10), 922–927. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:10(922)

Lombardi, L., Nocita, C., Bettazzi, E., Fibbi, D., & Carnevale, E. (2017). Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Management, 69, 365–376. https://doi.org/10.1016/j.wasman.2017.08.040

Lynn, C. J., Dhir R. K., Ghataora G. S., & West R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122

Lynn, C. J., Dhir, R. K., & Ghataora, G. S. (2018). Environmental impacts of sewage sludge ash in construction: Leaching assessment. Re-sources, Conservation and Recycling, 136, 306–314. https://doi.org/10.1016/j.resconrec.2018.04.029

Lundin, M., Olofsson, M., Pettersson, G. J., & Zetterlund, H. (2004). Environmental and economic assessment of sewage sludge handling options. Resources, Conservation and Recycling, 41(4), 255–278. https://doi.org/10.1016/j.resconrec.2003.10.006

Mohajerani, A., Ukwatta, A., & Setunge, S. (2018). Fired-clay bricks incorporating biosolids: Comparative life-cycle assessment. Journal of Materials in Civil Engineering, 30(7), 1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002308

Nakić, D. (2018). Environmental evaluation of concrete with sewage sludge ash based on LCA. Sustainable Production and Consumption, 16, 193–201. https://doi.org/10.1016/j.spc.2018.08.003

Nakić, D., Vouk, D., Donatello, S., & Anić-Vučinić, A. (2017). Environmental impact of sewage sludge ash assessed through leaching. Engi-neering Review, 37(2), 222–234. https://hrcak.srce.hr/181515

Nakić, D., Vouk, D., Serdar, M., & Cheeseman, C. R. (2020). Use of MID-MIX® treated sewage sludge in cement mortars and concrete. European Journal of Environmental and Civil Engineering, 24(10), 1483–1498. https://doi.org/10.1080/19648189.2018.1474383

Oliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/j.jclepro.2019.03.147

Ottosen, L. M., Bertelsen, I. M. G., Jensen, P. E., & Kirkelund, G. M. (2020). Sewage sludge ash as resource for phosphorus and material for clay brick manufacturing. Construction and Building Materials, 249, 118684. https://doi.org/10.1016/j.conbuildmat.2020.118684

Shi, H. S., & Kan, L. L. (2009). Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of Hazardous Materials, 164(2–3), 750–754. https://doi.org/10.1016/j.jhazmat.2008.08.077

Shih, P., Chang, J., Lu, H., & Chiang, L. (2005). Reuse of heavy metals containing sludges in cement production. Cement and Concrete Re-search, 35(11), 2110–2115. https://doi.org/10.1016/j.cemconres.2005.08.006

Suh, Y. J., & Rousseaux, P. (2002). An LCA of alternative wastewater sludge treatment scenarios. Resources, Conservation & Recycling, 35(3), 191–200. https://doi.org/10.1016/S0921-3449(01)00120-3

Świerczek, L., Cieślik, B. M., & Konieczka, P. (2018). The potential of raw sludge in construction industry – A review. Journal of Cleaner Production, 200, 342–356. https://doi.org/10.1016/j.jclepro.2018.07.188

Vouk, D., Nakić, D., Štirmer, N., & Cheeseman, C. R. (2018). Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material. Journal of Material Cycles and Waste Management, 20, 1458–1467. https://doi.org/10.1007/s10163-018-0707-8

Vouk, D., Serdar, M., Nakić, D., & Anić-Vučinić, A. (2016). Use of sludgegenerated at WWTP in the production of cement mortar and con-crete. Civil Engineer, 68(3), 199–210. https://doi.org/10.14256/JCE.1374.2015

Wittmaier, M., Langer, S., & Sawilla, B. (2009). Possibilities and limitations of life cycle assessment (LCA) in the development of waste utili-zation systems – Applied examples for a region in Northern Germany. Waste Management, 29(5), 1732–1738. https://doi.org/10.1016/j.wasman.2008.11.004

Zhou, Y., Li, J., Lu, J., Cheeseman, C. R., & Poon, C. S. (2020b). Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation. Journal of Cleaner Production, 244, 118856. https://doi.org/10.1016/j.jclepro.2019.118856

Zhou, Y., Li, J., Lu, J., Cheeseman, C. R., & Poon, C. S. (2020a). Sewage sludge ash: A comparative evaluation with fly ash for potential use as lime-pozzolan binders. Construction and Building Materials, 242, 118160. https://doi.org/10.1016/j.conbuildmat.2020.118160