Share:


An investigation into working behavior characteristics of parabolic CFST arches applying structural stressing state theory

    Jun Shi Affiliation
    ; Kangkang Yang Affiliation
    ; Kaikai Zheng Affiliation
    ; Jiyang Shen Affiliation
    ; Guangchun Zhou Affiliation
    ; Yanxia Huang Affiliation

Abstract

This paper conducts the experimental and simulative analysis of stressing state characteristics for parabolic concretefilled steel tubular (CFST) arches undergoing vertical loads. The measured stain data is firstly modeled as the generalized strain energy density (GSED) to describe structural stressing state mode. Then, the normalized GSED sum Ej,norm at each load Fj derives the Ej,norm-Fj curve reflecting the stressing state characteristics of CFST arches. Furthermore, the Mann-Kendall criterion is adopted to detect the stressing state change of the CFST arch during its load-bearing process, leading to the revelation of a vital stressing state leap characteristic according to the natural law from quantitative change to qualitative change of a system. The revealed qualitative leap characteristic updates the existing definition of the CFST arch’s failure load. Finally, the accurate formula is derived to predict the failure/ultimate loads of CFST arches. Besides, a method of numerical shape function is proposed to expand the limited strain data for further analysis of the stressing state submodes. The GSED-based analysis of structural stressing state opens a new way to recognize the unseen working behavior characteristics of arch structures and the updated failure load could contribute to the improvement on the structural design codes.

Keyword : stressing state, CFST arch, energy density, leap, failure load, formula

How to Cite
Shi, J., Yang, K., Zheng, K., Shen, J., Zhou, G., & Huang, Y. (2019). An investigation into working behavior characteristics of parabolic CFST arches applying structural stressing state theory. Journal of Civil Engineering and Management, 25(3), 215-227. https://doi.org/10.3846/jcem.2019.8102
Published in Issue
Mar 7, 2019
Abstract Views
1205
PDF Downloads
741
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abaqus, Inc. (2009). Abaqus analysis user’s manuals and example problems manuals (Version 6.9). Providence, Rhode Island.

Ayers, P. W. (2006). Information theory, the shape function, and the hirshfeld atom. Theoretical Chemistry Accounts, 115(5), 370-378. https://doi.org/10.1007/s00214-006-0121-5

Campione, G., & Scibilia, N. (2002). Beam-column behavior of concrete filled steel tubes. Steel and Composite Structures, 2(4), 259-276. https://doi.org/10.12989/scs.2002.2.4.259

Cancelliere, I., Imbimbo, M., & Sacco, E. (2010). Experimental tests and numerical modeling of reinforced masonry arches. Engineering Structures, 32(3), 776-792. https://doi.org/10.1016/j.engstruct.2009.12.005

Chen, B. C. (2007, September 12–14). An overview of concrete and CFST arch bridges in China. In Proceedings of the 5th International Conference on Arch Bridges. Madeira, Portugal.

Chen, B. C., & Chen, Y. J. (2000). Experimental study on mechanic behaviors of concrete-filled steel tubular rib arch under in-plane loads. Engineering Mechanics, 17(2), 44-50. https://doi.org/10.3969/j.issn.1000-4750.2000.02.007

Chen, S. M., & Zhang, H. F. (2012). Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface. Steel and Composite Structures, 13(3), 277-293. https://doi.org/10.12989/scs.2012.13.3.277

Dessouki, A. K., Yousef, A. H., & Fawzy, M. M. (2014). Stiffener configurations of beam to concrete-filled tube column connections. Steel & Composite Structures, 17(1), 83-103. https://doi.org/10.12989/scs.2014.17.1.083

GB50923-2013. (2013). Technical code for concrete-filled steel tube arch bridges (Chinese standard). Retrieved from http://www.bjkangdi.cn/upload/20170628145951.pdf

Geng, Y., Wang, Y., Ranzi, G., & Wu, X. (2014). Time-dependent analysis of long-span, concrete-filled steel tubular arch bridges. Journal of Bridge Engineering, 19(4), 04013019. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000549

Gilbert, R. L., & Warner, R. F. (1978). Tension stiffening in reinforced concrete slabs. Journal of Structural Division, 104(12), 1885-1900.

Han, L. H. (2000). The influence of concrete compaction on the strength of concrete filled steel tubes. Advances in Structural Engineering, 3(2), 131-137. https://doi.org/10.1260/1369433001502076

Han, L. H. (2007). Concrete-filled steel tubular structures: Theories and applications (2nd ed.). Beijing: Science Press (in Chinese).

Han, L. H., Yao, G. H., & Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-con-solidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004

Han, X., Zhu, B., Liu, G. M., Wang, J. P., & Xiang, B. S. (2013). The analysis of double-nonlinearity stability of concrete filled steel-tube arch bridge. Advanced Materials Research, 724-725, 1709-1713. https://doi.org/10.4028/www.scientific.net/AMR.724-725.1709

Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107-121. https://doi.org/10.1029/WR018i001p00107

Huang, Y. X., Zhang, Y., Zhang, M., & Zhou, G. C. (2014). Method for predicting the failure load of masonry wall panels based on generalized strain-energy density. Journal of Engineering Mechanics, 140(8), 04014061. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000771

Kendall, M. G. (1957). Rank correlation methods. Biometrika, 44(1/2), 298. https://doi.org/10.2307/2333282

Li, N., Lu, Y. Y., Li, S., & Liang, H. J. (2015). Statistical-based evaluation of design codes for circular concrete-filled steel tube columns. Steel & Composite Structures, 18(2), 519-546. https://doi.org/10.12989/scs.2015.18.2.519

Li, Z. L., & Zhou, P. Y. (2011). Research on overall stability of concrete-filled steel tubular bowstring arch bridge. Advanced Materials Research, 243-249, 1988-1994. https://doi.org/10.4028/www.scientific.net/AMR.243-249.1988

Liu, C. Y., Wang, W. Y., Wu, X. R., & Zhang, S. M. (2017). In-plane stability of fixed concrete-filled steel tubular parabolic arches under combined bending and compression. Journal of Bridge Engineering, 22(2), 04016116. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000993

Liu, Y., Wang, D., & Zhu, Y. Z. (2011). Analysis of ultimate load-bearing capacity of long-span CFST arch bridges. Applied Mechanics & Materials, 90–93(1), 1149-1156. https://doi.org/10.4028/www.scientific.net/AMM.90-93.1149

Luo, K., Pi, Y. L., Gao, W., Bradford, M. A., & Hui, D. (2015). Investigation into long-term behaviour and stability of concrete-filled steel tubular arches. Journal of Constructional Steel Research, 104, 127-136. https://doi.org/10.1016/j.jcsr.2014.10.014

Ma, Y. S., Wang, Y. F., Su, L., & Mei, S. Q. (2016). Influence of creep on dynamic behavior of concrete filled steel tube arch bridges. Steel & Composite Structures, 21(1), 109-122. https://doi.org/10.12989/scs.2016.21.1.109

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187

Padhi, G. S., Shenoi, R. A., Moyb, S. S. J., & Mccarthya, M. A. (2001). Analytic integration of kernel shape function product integrals in the boundary element method. Computers & Structures, 79(14), 1325-1333. https://doi.org/10.1016/S0045-7949(01)00020-7

Pi, Y. L., & Trahair, N. S. (1999). In-plane buckling and design of steel arches. Journal of Structural Engineering, 125(11), 1291-1298. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1291)

Pi, Y. L., Liu, C. Y., Bradford, M. A., & Zhang, S. M. (2012). In-plane strength of concrete-filled steel tubular circular arches. Journal of Constructional Steel Research, 69(1), 77-94. https://doi.org/10.1016/j.jcsr.2011.08.008

Rovero, L., Focacci, F., & Stipo, G. (2013). Structural behavior of arch models strengthened using fiber-reinforced polymer strips of different lengths. Journal of Composites for Construction, 17(2), 249-258. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000325

Shi, J., Li, P. C., Chen, W. Z., Zheng, K. K., & Zhou, G. C. (2018). Structural state of stress analysis of concrete-filled stainless steel tubular short columns. Journal of Stahlbau, 87(6), 600-610. https://doi.org/10.1002/stab.201810610

Wang, X. C. (2003). Finite element method. Beijing: Tsinghua University Press Publishers (in Chinese).

Wu, X. R., Liu, C. Y., Wang, W., & Wang, Y. Y. (2015). In-plane strength and design of fixed concrete-filled steel tubular parabolic arches. Journal of Bridge Engineering, 20(12), 04015016. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000766

Xiao, C. Z., Cai, S. H., Chen, T., & Xu, C. L. (2012). Experimental study on shear capacity of circular concrete filled steel tubes. Steel & Composite Structures, 13(5), 437-449. https://doi.org/10.12989/scs.2012.13.5.437

Yin, X., & Lu, X. (2010). Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube. Steel & Composite Structures, 10(4), 317-329. https://doi.org/10.12989/scs.2010.10.4.317

Yoshimura, M., Wu, Q. X., Takahashi, K., Nakamura, S., & Furukawa, K. (2006). Vibration analysis of the second Saikai Bridge: A concrete filled tubular (CFT) arch bridge. Journal of Sound and Vibration, 290(1/2), 388-409. https://doi.org/10.1016/j.jsv.2005.04.004

Zhong, S. T. (2003). The concrete-filled steel tubular structures. Beijing: Tsinghua University Press Publishers (in Chinese).