Share:


Evaluating smart city technology efficiency and citizen satisfaction using data envelopment analysis

    Omer Bafail Affiliation

Abstract

This study employs Data Envelopment Analysis (DEA) to evaluate the efficiency of the top 20 smart cities in converting Research and Development (R&D) investments into desired outcomes. Using national R&D expenditure (2015–2022) as input and ten criteria from the IMD 2024 Smart City Index report as outputs, the analysis reveals varying levels of efficiency among leading smart cities. Seven cities achieved perfect efficiency scores, while others, including some high-ranking cities, showed unexpected inefficiencies. This study provides valuable insights into resource utilization and identifies specific areas for improvement across structural and technological dimensions. The limitations include the focus on top-performing cities and the use of national R&D data as a proxy for city-specific investments. The findings of this study offer a foundation for policymakers and urban planners to optimize resource allocation and improve smart city initiatives, contributing to the ongoing development of sustainable urban environments in the face of technological advancements and urban challenges.

Keyword : smart city efficiency score, human development index, urban planning, citizen satisfaction, sustainable development, assessment method

How to Cite
Bafail, O. (2025). Evaluating smart city technology efficiency and citizen satisfaction using data envelopment analysis. International Journal of Strategic Property Management, 29(1), 62–80. https://doi.org/10.3846/ijspm.2025.23584
Published in Issue
Apr 1, 2025
Abstract Views
21
PDF Downloads
10
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234–245. https://doi.org/10.1016/j.cities.2016.09.009

Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22(1), 3–21. https://doi.org/10.1080/10630732.2014.942092

Alidrisi, H. (2021). The development of an efficiency-based global green manufacturing innovation index: An input-oriented DEA approach. Sustainability, 13(22), Article 12697. https://doi.org/10.3390/su132212697

Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80–91. https://doi.org/10.1016/j.cities.2019.01.032

Alves, C. G. M. de F., & Meza, L. A. (2023). A review of network DEA models based on slacks‐based measure: Evolution of literature, applications, and further research direction. International Transactions in Operational Research, 30(6), 2729–2760. https://doi.org/10.1111/itor.13284

Amiri, M., Rostamy-Malkhalifeh, M., Lotfi, F. H., & Mozaffari, M. (2023). Measuring returns to scale based on the triangular fuzzy DEA approach with different views of experts: Case study of Iranian insurance companies. Decision Making: Applications in Management and Engineering, 6(2), 787–807. https://doi.org/10.31181/dmame622023740

Angelidou, M. (2014). Smart city policies: A spatial approach. Cities, 41, S3–S11. https://doi.org/10.1016/j.cities.2014.06.007

Angelidou, M. (2015). Smart cities: A conjuncture of four forces. Cities, 47, 95–106. https://doi.org/10.1016/j.cities.2015.05.004

Anthopoulos, L. G. (2017). Understanding smart cities: A tool for smart government or an industrial trick? (Vol. 22). Springer. https://doi.org/10.1007/978-3-319-57015-0

Anthopoulos, L., Janssen, M., & Weerakkody, V. (2019). A Unified Smart City Model (USCM) for smart city conceptualization and benchmarking. Smart cities and smart spaces: Concepts, methodologies, tools, and applications (pp. 247–264). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-5225-7030-1.ch011

Apostolopoulos, V., & Kasselouris, G. (2022). Seizing the potential of transport pooling in urban logistics – the case of Thriasio logistics centre in Greece. Journal of Applied Research on Industrial Engineering, 9(2), 230–248. https://doi.org/10.22105/jarie.2021.309116.1390

Bafail, O. (2024). Optimizing smart city strategies: A data-driven analysis using random forest and regression analysis. Applied Sciences, 14(23), Article 11022. https://doi.org/10.3390/app142311022

Balubaid, M., Gulzar, W. A., Aburas, H., Taylan, O., Alkabaa, A. S., Bafail, O. A., Makki, A. A., Alqahtani, A. Y., Alidrisi, H. M., Al-sasi, B. O., Karuvatt, S. A., & Alidrisi, H. (2023). Monitoring the performance of agricultural and food secton companies using DEA. International Journal of Ecosystems and Ecology Science, 13(2), 9–24. https://doi.org/10.31407/ijees13.2

Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), 35–44. https://doi.org/10.1016/0377-2217(84)90006-7

Bartolacci, F., Del Gobbo, R., & Soverchia, M. (2025). Improving public services’ performance measurement systems: Applying data envelopment analysis in the big and open data context. International Journal of Public Sector Management, 38(3), 313–331. https://doi.org/10.1108/IJPSM-06-2023-0186

Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214, 481–518. https://doi.org/10.1140/epjst/e2012-01703-3

Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, frameworks and key technologies. Applied Sciences, 12(3), Article 1607. https://doi.org/10.3390/app12031607

Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustainable Cities and Society, 38, 230–253. https://doi.org/10.1016/j.scs.2017.12.034

Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212. https://doi.org/10.1016/j.scs.2017.02.016

Bibri, S. E., & Krogstie, J. (2019). Generating a vision for smart sustainable cities of the future: A scholarly backcasting approach. European Journal of Futures Research, 7(1), Article 5. https://doi.org/10.1186/s40309-019-0157-0

Caird, S. P., & Hallett, S. H. (2019). Towards evaluation design for smart city development. Journal of Urban Design, 24(2), 188–209. https://doi.org/10.1080/13574809.2018.1469402

Caragliu, A., & Del Bo, C. (2019). Smart innovative cities: The impact of smart city policies on urban innovation. Technological Forecasting and Social Change, 142, 373–383. https://doi.org/10.1016/j.techfore.2018.07.022

Caragliu, A., Del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of Urban Technology, 18(2), 65–82. https://doi.org/10.1080/10630732.2011.601117

Cardullo, P., & Kitchin, R. (2017). Being a ‘citizen’in the smart city: Up and down the scaffold of smart citizen participation (The Programmable City Working Paper 30). https://doi.org/10.31235/osf.io/v24jn

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Chen, T., Ramon Gil-Garcia, J., & Gasco-Hernandez, M. (2022). Understanding social sustainability for smart cities: The importance of inclusion, equity, and citizen participation as both inputs and long-term outcomes. Journal of Smart Cities and Society, 1, 135–148. https://doi.org/10.3233/SCS-210123

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Alternative DEA models. In W. W. Cooper, L. M. Seiford, & K. Tone (Eds.), Data envelopment analysis: A comprehensive text with models, applications, references and DEA-Solver software (pp. 87–130). Springer. https://doi.org/10.1007/978-0-387-45283-8_4

Dellnitz, A., & Rödder, W. (2021). Returns to scale as an established scaling indicator: Always a good advisor? Jahrbücher für Nationalökonomie und Statistik, 241(2), 173–186. https://doi.org/10.1515/jbnst-2019-0058

Duan, Y.-Q., Fan, X.-Y., Liu, J.-C., & Hou, Q.-H. (2020). Operating efficiency-based data mining on intensive land use in smart city. IEEE Access, 8, 17253–17262. https://doi.org/10.1109/ACCESS.2020.2967437

Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V, Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 132(2), 245–259. https://doi.org/10.1016/S0377-2217(00)00149-1

Ebrahimzade Adimi, M., Rostamy-Malkhalifeh, M., Hosseinzadeh Lotfi, F., & Mehrjoo, R. (2021). A model to evaluate the effects of the returns to scale on the inverse data envelopment analysis. Mathematical Sciences, 15(2), 111–121. https://doi.org/10.1007/s40096-020-00353-6

Emrouznejad, A., & Anouze, A. L. (2010). Data envelopment analysis with classification and regression tree–a case of banking efficiency. Expert Systems, 27(4), 231–246. https://doi.org/10.1111/j.1468-0394.2010.00516.x

Fan, S., Peng, S., & Liu, X. (2021). Can smart city policy facilitate the low‐carbon economy in China? A quasi‐natural experiment based on pilot city. Complexity, 2021(1), Article 9963404. https://doi.org/10.1155/2021/9963404

Fancello, G., Uccheddu, B., & Fadda, P. (2014). Data Envelopment Analysis (D.E.A.) for urban road system performance assessment. Procedia - Social and Behavioral Sciences, 111, 780–789. https://doi.org/10.1016/j.sbspro.2014.01.112

Fang, Y., & Shan, Z. (2024). Optimising smart city evaluation: A people‐oriented analysis method. IET Smart Cities, 6(1), 41–53. https://doi.org/10.1049/smc2.12073

Fernandez-Anez, V., Fernández-Güell, J. M., & Giffinger, R. (2018). Smart city implementation and discourses: An integrated conceptual model. The case of Vienna. Cities, 78, 4–16. https://doi.org/10.1016/j.cities.2017.12.004

García‐Sánchez, I. M. (2006). Efficiency measurement in Spanish local government: The case of municipal water services. Review of Policy Research, 23(2), 355–372. https://doi.org/10.1111/j.1541-1338.2006.00205.x

Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, N., & Meijers, E. J. (2007). Smart cities: Ranking of European medium-sized cities (Final Report). Centre of Regional Science.

Guo, Q., & Zhong, J. (2022). The effect of urban innovation performance of smart city construction policies: Evaluate by using a multiple period difference-in-differences model. Technological Forecasting and Social Change, 184, Article 122003. https://doi.org/10.1016/j.techfore.2022.122003

Hodson, E., Vainio, T., Sayún, M. N., Tomitsch, M., Jones, A., Jalonen, M., Börütecene, A., Hasan, M. T., Paraschivoiu, I., Wolff, A., Yavo-Ayalon, S., Yli-Kauhaluoma, S., & Young, G. W. (2023). Evaluating social impact of smart city technologies and services: Methods, challenges, future directions. Multimodal Technologies and Interaction, 7(3), Article 33. https://doi.org/10.3390/mti7030033

Hollands, R. G. (2020). Will the real smart city please stand up?: Intelligent, progressive or entrepreneurial? In The Routledge companion to smart cities (pp. 179–199). Routledge. https://doi.org/10.4324/9781315178387-13

Huang, C., & Nazir, S. (2021). Analyzing and evaluating smart cities for IoT based on use cases using the analytic network process. Mobile Information Systems, 2021(1), Article 6674479. https://doi.org/10.1155/2021/6674479

Huovila, A., Bosch, P., & Airaksinen, M. (2019). Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities, 89, 141–153. https://doi.org/10.1016/j.cities.2019.01.029

IMD World Competitveness Center. (2024). IMD Smart City Index 2024. https://issuu.com/docs/e7a60c053affbf9e98fcba93afe857af?fr=xKAE9_zU1NQ

International Monetary Fund. (2025). GDP, current prices. https://www.imf.org/external/datamapper/PPPGDP@WEO/OEMDC/ADVEC/WEOWORLD

Ismagilova, E., Hughes, L., Rana, N. P., & Dwivedi, Y. K. (2022). Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework. Information Systems Frontiers, 24, 393–414. https://doi.org/10.1007/s10796-020-10044-1

Javed, A. R., Shahzad, F., ur Rehman, S., Zikria, Y. B., Razzak, I., Jalil, Z., & Xu, G. (2022). Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities, 129, Article 103794. https://doi.org/10.1016/j.cities.2022.103794

Joss, S., Cook, M., & Dayot, Y. (2017). Smart cities: Towards a new citizenship regime? A discourse analysis of the British Smart City Standard. Journal of Urban Technology, 24(4), 29–49. https://doi.org/10.1080/10630732.2017.1336027

Kashef, M., Visvizi, A., & Troisi, O. (2021). Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Computers in Human Behavior, 124, Article 106923. https://doi.org/10.1016/j.chb.2021.106923

Keles, E. U., & Alptekin, G. I. (2023). Evaluation of the digitalization efficiency of countries using data envelopment analysis. In 2023 Smart City Symposium Prague (SCSP) (pp. 1–5). IEEE. https://doi.org/10.1109/SCSP58044.2023.10146126

Kirimtat, A., Krejcar, O., Kertesz, A., & Tasgetiren, M. F. (2020). Future trends and current state of smart city concepts: A survey. IEEE Access, 8, 86448–86467. https://doi.org/10.1109/ACCESS.2020.2992441

Kitchin, R. (2015). Making sense of smart cities: Addressing present shortcomings. Cambridge Journal of Regions, Economy and Society, 8(1), 131–136. https://doi.org/10.1093/cjres/rsu027

Kitchin, R., Cardullo, P., & Di Feliciantonio, C. (2019). Citizenship, justice, and the right to the smart city. In P. Cardullo, C. Di Feliciantonio, & R. Kitchin (Eds.), The right to the smart city (pp. 1–24). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78769-139-120191001

Kitchin, R., Lauriault, T. P., & McArdle, G. (2015). Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards. Regional Studies, Regional Science, 2(1), 6–28. https://doi.org/10.1080/21681376.2014.983149

Kohl, S., & Brunner, J. O. (2020). Benchmarking the benchmarks – comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings. European Journal of Operational Research, 285(3), 1042–1057. https://doi.org/10.1016/j.ejor.2020.02.031

Kourtit, K., Nijkamp, P., & Suzuki, S. (2021). Comparative urban performance assessment of safe cities through data envelopment analysis. Regional Science Policy & Practice, 13(3), 591–603. https://doi.org/10.1111/rsp3.12276

Kourtzanidis, K., Angelakoglou, K., Apostolopoulos, V., Giourka, P., & Nikolopoulos, N. (2021). Assessing impact, performance and sustainability potential of smart city projects: Towards a case agnostic evaluation framework. Sustainability, 13(13), Article 7395. https://doi.org/10.3390/su13137395

Kraidi, A. A., Daneshvar, S., & Adesina, K. A. (2024). Weight-restricted approach on constant returns to scale DEA models: Efficiency of internet banking in Turkey. Heliyon, 10(10). Article e31008. https://doi.org/10.1016/j.heliyon.2024.e31008

Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities – exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 52–62. https://doi.org/10.1016/j.envsoft.2013.12.019

Kushwah, V. S., Parashar, J., Dabas, P., Meena, L., & Sharma, V. (2024). Data science advancements in healthcare, education, and cities: An overview. In T. Murugan, J. W., & V. P. (Eds.), Technologies for sustainable healthcare development (pp. 17–36). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-2901-6.ch002

Kutty, A. A., Kucukvar, M., Abdella, G. M., Bulak, M. E., & Onat, N. C. (2022). Sustainability performance of European smart cities: A novel DEA approach with double frontiers. Sustainable Cities and Society, 81, Article 103777. https://doi.org/10.1016/j.scs.2022.103777

Lacson, J. J., Lidasan, H. S., Spay Putri Ayuningtyas, V., Feliscuzo, L., Malongo, J. H., Lactuan, N. J., Bokingkito, P., & Velasco, L. C. (2023). Smart city assessment in developing economies: A scoping review. Smart Cities, 6(4), 1744–1764. https://doi.org/10.3390/smartcities6040081

Lai, C. S., Jia, Y., Dong, Z., Wang, D., Tao, Y., Lai, Q. H., Wong, R. T. K., Zobaa, A. F., Wu, R., & Lai, L. L. (2020). A review of technical standards for smart cities. Clean Technologies, 2(3), 290–310. https://doi.org/10.3390/cleantechnol2030019

Lee, C., & Lee, E. H. (2024). Evaluation of urban nightlife attractiveness for Millennials and Generation Z. Cities, 149, Article 104934. https://doi.org/10.1016/j.cities.2024.104934

Lee, E. H., Shin, H., Cho, S.-H., Kho, S.-Y., & Kim, D.-K. (2019a). Evaluating the efficiency of transit-oriented development using network slacks-based data envelopment analysis. Energies, 12(19), Article 3609. https://doi.org/10.3390/en12193609

Lee, E. H., & Jeong, J. (2023). Assessing equity of vertical transport system installation in subway stations for mobility handicapped using data envelopment analysis. Journal of Public Transportation, 25, Article 100074. https://doi.org/10.1016/j.jpubtr.2023.100074

Lee, E. H., Lee, H., Kho, S.-Y., & Kim, D.-K. (2019b). Evaluation of transfer efficiency between bus and subway based on data envelopment analysis using smart card data. KSCE Journal of Civil Engineering, 23(2), 788–799. https://doi.org/10.1007/s12205-018-0218-0

Liu, D., & Chen, Q. (2022). A novel three-way decision model with DEA method. International Journal of Approximate Reasoning, 148, 23–40. https://doi.org/10.1016/j.ijar.2022.05.003

Liu, X., Payakkamas, P., Dijk, M., & de Kraker, J. (2023). GIS models for sustainable urban mobility planning: Current use, future needs and potentials. Future Transportation, 3(1), 384–402. https://doi.org/10.3390/futuretransp3010023

Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the smart city performance. Innovation: The European Journal of Social Science Research, 25(2), 137–149. https://doi.org/10.1080/13511610.2012.660325

Lytras, M. D., & Visvizi, A. (2018). Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research. Sustainability, 10(6), Article 1998. https://doi.org/10.3390/su10061998

Mahajan, V., Mogha, S. K., & Pannala, R. K. P. K. (2024). Evaluation of efficiency and ranking of Indian hotels and restaurants: A bootstrap DEA approach. Benchmarking: An International Journal, 31(1), 186–198. https://doi.org/10.1108/BIJ-07-2021-0443

Makki, A. A., & Alqahtani, A. Y. (2024). Analysis of the barriers to smart city development using DEMATEL. Urban Science, 8(1), Article 10. https://doi.org/10.3390/urbansci8010010

Manoharan, G., Durai, S., Rajesh, G. A., Razak, A., Rao, C. B. S., & Ashtikar, S. P. (2023). Chapter five: An investigation into the effectiveness of smart city projects by identifying the framework for measuring performance. In V. Basetti, C. K. Shiva, M. R. Ungarala, & S. S. Rangarajan (Eds.), Artificial intelligence and machine learning in smart city planning (pp. 71–84). Elsevier. https://doi.org/10.1016/B978-0-323-99503-0.00004-1

Mao, C., Wang, Z., Yue, A., Liu, H., & Peng, W. (2023). Evaluation of smart city construction efficiency based on multivariate data fusion: A perspective from China. Ecological Indicators, 154, Article 110882. https://doi.org/10.1016/j.ecolind.2023.110882

Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renewable and Sustainable Energy Reviews, 70, 1298–1322. https://doi.org/10.1016/j.rser.2016.12.030

Milošević, M. R., Milošević, D. M., Stanojević, A. D., Stević, D. M., & Simjanović, D. J. (2021). Fuzzy and interval AHP approaches in sustainable management for the architectural heritage in smart cities. Mathematics, 9(4), Article 304. https://doi.org/10.3390/math9040304

Moghaddas, Z., Yousefi, S., Mohammadi, M., & Tosarkani, B. M. (2023). A hybrid returns to scale-DEA model for sustainable efficiency evaluation of urban transportation systems. International Journal of Systems Science: Operations & Logistics, 10(1), Article 2221364. https://doi.org/10.1080/23302674.2023.2221364

Mora, L., Bolici, R., & Deakin, M. (2017). The first two decades of smart-city research: A bibliometric analysis. Journal of Urban Technology, 24(1), 3–27. https://doi.org/10.1080/10630732.2017.1285123

Mora, L., Deakin, M., & Reid, A. (2019). Strategic principles for smart city development: A multiple case study analysis of European best practices. Technological Forecasting and Social Change, 142, 70–97. https://doi.org/10.1016/j.techfore.2018.07.035

Moradi, H., Lotfi, F. H., & Rostamy-Malkhalifeh, M. (2025). Inverse data envelopment analysis models for inputs/outputs estimation in two-stage processes. Decision Making: Applications in Management and Engineering, 8(1), 82–107. https://doi.org/10.31181/dmame8120251091

Mosannenzadeh, F., Bisello, A., Diamantini, C., Stellin, G., & Vettorato, D. (2017). A case-based learning methodology to predict barriers to implementation of smart and sustainable urban energy projects. Cities, 60, 28–36. https://doi.org/10.1016/j.cities.2016.07.007

Nasser, N., Khan, N., Karim, L., ElAttar, M., & Saleh, K. (2021). An efficient time-sensitive data scheduling approach for wireless sensor networks in smart cities. Computer Communications, 175, 112–122. https://doi.org/10.1016/j.comcom.2021.05.006

Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current trends in smart city initiatives: Some stylised facts. Cities, 38, 25–36. https://doi.org/10.1016/j.cities.2013.12.010

Neves, F. T., de Castro Neto, M., & Aparicio, M. (2020). The impacts of open data initiatives on smart cities: A framework for evaluation and monitoring. Cities, 106, Article 102860. https://doi.org/10.1016/j.cities.2020.102860

Ninčević Pašalić, I., Ćukušić, M., & Jadrić, M. (2021). Smart city research advances in Southeast Europe. International Journal of Information Management, 58, Article 102127. https://doi.org/10.1016/j.ijinfomgt.2020.102127

OECD. (2025). Science, technology and innovation scoreboard. https://www.oecd.org/en/data/datasets/science-technology-and-innovation-scoreboard.html

Omrani, H., Fahimi, P., & Mahmoodi, A. (2020). A data envelopment analysis game theory approach for constructing composite indicator: An application to find out development degree of cities in West Azarbaijan province of Iran. Socio-Economic Planning Sciences, 69, Article 100675. https://doi.org/10.1016/j.seps.2018.12.002

Ozkaya, G., & Erdin, C. (2020). Evaluation of smart and sustainable cities through a hybrid MCDM approach based on ANP and TOPSIS technique. Heliyon, 6(10), Article e05052. https://doi.org/10.1016/j.heliyon.2020.e05052

Patrão, C., Moura, P., & Almeida, A. T. de. (2020). Review of smart city assessment tools. Smart Cities, 3(4), 1117–1132. https://doi.org/10.3390/smartcities3040055

Pelton, J. N., & Madry, S. (2024). Space systems, quantum computers, big data and sustainability: New tools for the United Nations Sustainable Development Goals. In Artificial Intelligence for Space: AI4SPACE (pp. 53–104). CRC Press. https://doi.org/10.1201/9781003366386-3

Raith, A., Ehrgott, M., Fauzi, F., Lin, K.-M., Macann, A., Rouse, P., & Simpson, J. (2022). Integrating data envelopment analysis into radiotherapy treatment planning for head and neck cancer patients. European Journal of Operational Research, 296(1), 289–303. https://doi.org/10.1016/j.ejor.2021.04.007

Romão, J., Kourtit, K., Neuts, B., & Nijkamp, P. (2018). The smart city as a common place for tourists and residents: A structural analysis of the determinants of urban attractiveness. Cities, 78, 67–75. https://doi.org/10.1016/j.cities.2017.11.007

Ruhlandt, R. W. S. (2018). The governance of smart cities: A systematic literature review. Cities, 81, 1–23. https://doi.org/10.1016/j.cities.2018.02.014

Sarparast, M., Hosseinzadeh Lotfi, F., & Amirteimoori, A. (2022). Investigating the sustainability of return to scale classification in a two‐stage network based on DEA models. Discrete Dynamics in Nature and Society, 2022(1), Article 8951103. https://doi.org/10.1155/2022/8951103

Sharif, R. A., & Pokharel, S. (2022). Smart city dimensions and associated risks: Review of literature. Sustainable Cities and Society, 77, Article 103542. https://doi.org/10.1016/j.scs.2021.103542

Sharifi, A. (2019). A critical review of selected smart city assessment tools and indicator sets. Journal of Cleaner Production, 233, 1269–1283. https://doi.org/10.1016/j.jclepro.2019.06.172

Sharifi, A. (2020). A typology of smart city assessment tools and indicator sets. Sustainable Cities and Society, 53, Article 101936. https://doi.org/10.1016/j.scs.2019.101936

Shen, X., Gu, Y., Zhao, X., & Xu, J. (2022). A data envelopment analysis evaluation study of urban crowd sourcing competitiveness based on evidence from 21 Chinese cities. Frontiers in Psychology, 13, Article 861841. https://doi.org/10.3389/fpsyg.2022.861841

Simonofski, A., Vallé, T., Serral, E., & Wautelet, Y. (2021). Investigating context factors in citizen participation strategies: A comparative analysis of Swedish and Belgian smart cities. International Journal of Information Management, 56, Article 102011. https://doi.org/10.1016/j.ijinfomgt.2019.09.007

Singh, R., Kukreja, D., & Sharma, D. K. (2023). Blockchain-enabled access control to prevent cyber attacks in IoT: Systematic literature review. Frontiers in Big Data, 5, Article 1081770. https://doi.org/10.3389/fdata.2022.1081770

Stübinger, J., & Schneider, L. (2020). Understanding smart city—a data-driven literature review. Sustainability, 12(20), Article 8460. https://doi.org/10.3390/su12208460

Tan, S. Y., & Taeihagh, A. (2020). Smart city governance in developing countries: A systematic literature review. Sustainability, 12(3), Article 899. https://doi.org/10.3390/su12030899

Toli, A. M., & Murtagh, N. (2020). The concept of sustainability in smart city definitions. Frontiers in Built Environment, 6, Article 77. https://doi.org/10.3389/fbuil.2020.00077

Toloo, M., Mensah, E. K., & Salahi, M. (2022). Robust optimization and its duality in data envelopment analysis. Omega, 108, Article 102583. https://doi.org/10.1016/j.omega.2021.102583

Toloo, M., & Tichý, T. (2015). Two alternative approaches for selecting performance measures in data envelopment analysis. Measurement, 65, 29–40. https://doi.org/10.1016/j.measurement.2014.12.043

Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3), 145–156. https://doi.org/10.1016/j.omega.2009.07.003

United Nations. (2019). World urbanization prospects 2018. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Feb/un_2018_wup_highlights.pdf

Van Puyenbroeck, T., Montalto, V., & Saisana, M. (2021). Benchmarking culture in Europe: A data envelopment analysis approach to identify city-specific strengths. European Journal of Operational Research, 288(2), 584–597. https://doi.org/10.1016/j.ejor.2020.05.058

Vanolo, A. (2014). Smartmentality: The smart city as disciplinary strategy. Urban Studies, 51(5), 883–898. https://doi.org/10.1177/0042098013494427

Worthington, A., & Dollery, B. (2000). An empirical survey of frontier efficiency measurement techniques in local government. Local Government Studies, 26(2), 23–52. https://doi.org/10.1080/03003930008433988

Xiong, B., Zhang, Q., Tao, X., & Goh, M. (2024). Benchmarking with quasiconcave production function under variable returns to scale: Exploration and empirical application. Expert Systems with Applications, 243, Article 122888. https://doi.org/10.1016/j.eswa.2023.122888

Ye, F., Chen, Y., Li, L., Li, Y., & Yin, Y. (2022). Multi-criteria decision-making models for smart city ranking: Evidence from the Pearl River Delta region, China. Cities, 128, Article 103793. https://doi.org/10.1016/j.cities.2022.103793

Yigitcanlar, T., Kamruzzaman, M., Buys, L., Ioppolo, G., Sabatini-Marques, J., da Costa, E. M., & Yun, J. J. (2018). Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities, 81, 145–160. https://doi.org/10.1016/j.cities.2018.04.003

Yigitcanlar, T., Kamruzzaman, M., Foth, M., Sabatini-Marques, J., da Costa, E., & Ioppolo, G. (2019). Can cities become smart without being sustainable? A systematic review of the literature. Sustainable Cities and Society, 45, 348–365. https://doi.org/10.1016/j.scs.2018.11.033

Yigitcanlar, T., Kankanamge, N., & Vella, K. (2022). How are smart city concepts and technologies perceived and utilized? A systematic geo-Twitter analysis of smart cities in Australia. In Sustainable smart city transitions (pp. 133–152). Routledge. https://doi.org/10.4324/9781003205722-7

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328

Zarrin, M., & Brunner, J. O. (2023). Analyzing the accuracy of variable returns to scale data envelopment analysis models. European Journal of Operational Research, 308(3), 1286–1301. https://doi.org/https://doi.org/10.1016/j.ejor.2022.12.015

Zhang, Y., Zhang, Y., Zhang, H., & Zhang, Y. (2022). Evaluation on new first-tier smart cities in China based on Entropy method and TOPSIS. Ecological Indicators, 145, Article 109616. https://doi.org/10.1016/j.ecolind.2022.109616

Zhang, Y., Liu, F., Gu, Z., Chen, Z., Shi, Y., & Li, A. (2019). Research on smart city evaluation based on hierarchy of needs. Procedia Computer Science, 162, 467–474. https://doi.org/10.1016/j.procs.2019.12.012

Zhao, H., Guo, S., & Zhao, H. (2018). Comprehensive performance assessment on various battery energy storage systems. Energies, 11(10), Article 2841. https://doi.org/10.3390/en11102841

Zubir, M. Z., Noor, A. A., Mohd Rizal, A. M., Harith, A. A., Abas, M. I., Zakaria, Z., & Bakar, A. F. (2024). Approach in inputs & outputs selection of Data Envelopment Analysis (DEA) efficiency measurement in hospitals: A systematic review. Plos One, 19(8), Article e0293694. https://doi.org/10.1371/journal.pone.0293694