Share:


Detection of vertical deformation in Jakarta-Bandung high speed train route using X SAR and Sentinel

    Atriyon Julzarika Affiliation
    ; Catur Aries Rokhmana Affiliation

Abstract

The Jakarta-Bandung high speed train is one of the national strategic plans. The high speed train route connects the Jakarta city to the Bandung city. The route needs to be detailed topography and checking of vertical deformations that occur along its route. This study aims to determine the conditions of vertical deformation in four stations and the Jakarta Bandung high speed train route. The spatial information of vertical deformation was extracted from the X SAR (2000) and Sentinel data (2018). The method used was Differential Interferometry Synthetic Aperture Radar (DinSAR). The vertical deformation was obtained from the reduction of topography in 2018 with the topography of 2000. Both of these topography must meet the tolerance of 1.96 sigma so that the resulting deformation is also more optimal. The results of this study can be used to reference the determination of high speed train route based on conditions of vertical deformation.

Keyword : vertical deformation, DinSAR, High speed train, X SAR, Sentinel

How to Cite
Julzarika, A., & Rokhmana, C. A. (2019). Detection of vertical deformation in Jakarta-Bandung high speed train route using X SAR and Sentinel. Geodesy and Cartography, 45(4), 169-176. https://doi.org/10.3846/gac.2019.10761
Published in Issue
Dec 23, 2019
Abstract Views
1301
PDF Downloads
611
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ASPRS. (2014). ASPRS accuracy standard for digital geospatial data. ASPRS, United States of America.

Bates, R. L. & Jackson, J. A. (1987). Glossary of geology (3rd ed.). American Geological Institute, Alexandria.

Bemmelen, R. W. Van. (1949). The geology of Indonesia (Vol. 1 A). Government Printing Office, The Hauge.

Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792

Chang, L., Dollevoet, R., & Hanssen, R. F. (2014). Railway infrastructure monitoring using satellite radar data. International Journal of Railway Technology, 3, 79-91. https://doi.org/10.4203/ijrt.3.2.5

Chang, L., Dollevoet, R. P. B. J., & Hanssen, R. F. (2017). Nationwide railway monitoring using satellite SAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2), 596-604. https://doi.org/10.1109/JSTARS.2016.2584783

Chang, L. & Hanssen, R. F. (2016). A probabilistic approach for InSAR timeseries postprocessing. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 421-430. https://doi.org/10.1109/TGRS.2015.245903

Chrzanowski, A. (1986, October 31 – November 1). Geotechnical and other non-geodetic method in deformation measurement. In Y. Bock (Ed.), Proceedings of the Deformation Measurement Workshop. Massachusetts Institute of Technology, Cambridge, MA.

Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M., & Fernández, P. (2005). Land deformation monitoring using SAR interferometry: state-of-the-art. Photogrammetrie, Fernerkundung und Geoinformation, 6, 497-510.

Crosetto, M., Monserrat, O., Cuevas, M., & Crippa, B. (2011). Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sensing, 3, 305-318. https://doi.org/10.3390/rs3020305

Cuenca, M. C., Hooper, A. J., & Hanssen, R. F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, the Netherlands observed by satellite radar interferometry. Journal of Applied Geophysics, 88, 1-11. https://doi.org/10.1016/j.jappgeo.2012.10.003

DLR. (2019). SRTM X. German Aespace Center (DLR). Retrieved 21 March 2019 from https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5515/9214_read-17716/

European Space Agency. (2019). Sentinel satellites. European Space Agency. Retrieved 24 March 2019 from https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4

Esveld, C. (2001). Modern railway track. Zaltbommel, Netherlands: MRT Productions.

Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212. https://doi.org/10.1109/36.868878

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460-3470. https://doi.org/10.1109/TGRS.2011.2124465

Fifamè Koudogbo, F., Urdiroz, A., Robles, J. G., Chapron, G., Lebon, G., Fluteaux, V., & Priol, G. (2018). Radar interferometry as an innovative solution for monitoring the construction of the Grand Paris Express metro network – First results. TRE ALTAMIRA - tunnelcanada.ca. Retrieved from https://site.tre-altamira.com/wp-content/uploads/2018_InSAR_monitoring_Grand-Paris-Express-metro-construction_Koudogbo_et_al_WTC2018.pdf

Hanssen, R. F. (2001). Radar interferometry: Data interpretation and error analysis. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/0-306-47633-9

Hyangsun, H., & Hoonyol, L. (2011). Motion of Campbell glacier, east Antarctica, observed by satellite and ground-based interferometric synthetic aperture radar. In 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1(4), 26-30.

Julzarika, A. & Susanto. (2009). Interferometric Synthetic Aperture Radar (Insar) applications for 3D modelling (DSM, DEM, dan DTM). Media sains dan teknologi dirgantara, 4(4), 154-159.

Jungner, A. (2009). Ground-based synthetic aperture radar data processing for nt (Master thesis). Royal Institute of Technology (KTH), Division of Geodesy. Stockholm, Sweden.

Kuang, S. (1996). Geodetic network analysis and optimal design: Concepts and applications. Chelsea, Michigan: Ann Arbor, Inc.

Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation (3rd ed.). New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons.

Liu, G., Jia, H., Zhang, R., Zhang, H., Jia, H. & Yu, B. (2011). Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 159-170. https://doi.org/10.1109/JSTARS.2010.2067446

Luo, Q., Perissin, D., Lin, H., Zhang, Y., & Wang, W. (2014). Subsidence monitoring of Tianjin suburbs by TerraSAR-X persistent scatterers interferometry, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1642-1650. https://doi.org/10.1109/JSTARS.2013.2271501

Luzi, C., Del Ventisette, C., & Casagli, N. (2010). Monitoring deformation of the sciara del fuoco (Stromboli) through ground-based radar interferometry. Acta Vulcanologica 22(1), 77-84.

Martodjojo. (1984). Evolusi Cekungan Bogor Jawa Barat. (Disertation). Institut Teknologi Bandung. Indonesia.

Monserrat, O. (2012). Deformation measurement and monitoring with ground-based SAR (PhD thesis). Technical University of Catalonia.

Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40-48. https://doi.org/10.1016/j.isprsjprs.2014.04.001

Nico, G., Leva, D., Fortuny-Guasch, J., Antonello, G., & Tarchi, D. (2005). Generation of digital terrain models with a groundbased SAR system. IEEE Transactions on Geoscience and Remote Sensing, 43(1), 45-49. https://doi.org/10.1109/TGRS.2004.838354

Pieraccini, M., Luzi, G., Mecatti, D., Fratini, M., Noferini, L., Carissimi, L., Franchioni, G., & Atzeni, C. (2004). Remote sensing of building structural displacements using a microwave interferometer with imaging capability. NDT & E International, 37(7), 545-550. https://doi.org/10.1016/j.ndteint.2004.02.004

Reale, D., Serafino, F., & Pascazio, V. (2009). An accurate strategy for 3-D ground-based SAR imaging. IEEE Geoscience and Remote Sensing Letters 6(4), 681-685. https://doi.org/10.1109/LGRS.2009.2023537

Robles, J. G., Gomar, B. S., & Arnaud, A. (2015). Non-linear motion detection using SAR images in urban tunnelling. In Proceedings of the ITA World Tunnel Congress, Dubrovnik, Croatia.

Rödelsperger, S., Becker, M., Gerstenecker, C., Läufer, G., Schilling, K., & Steineck, D. (2010). Digital elevation model with the ground-based SAR IBIS-L as basis for volcanic deformation monitoring. Journal of Geodynamics, 49(3-4), 241-246. https://doi.org/10.1016/j.jog.2009.10.009

Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: Active and passive: Vol. III. Scattering and emission theory, advanced systems and applications. Dedham, Massachusetts: Artech House Inc.

van Leijen, F. J. (2014). Persistent scatterer interferometry based on geodetic estimation theory. Delft, Netherlands: Geodetic Commission.

Wikipedia. (2018). High-speed rail in Indonesia. Retrieved 9 October 2018 from https://en.wikipedia.org/wiki/High-speed_rail_in_Indonesia