Share:


Comparative efficiency testing of a composite hydraulic cylinder

    Michał Stosiak Affiliation
    ; Marek Lubecki Affiliation
    ; Michał Banaś Affiliation

Abstract

The paper points to the increasing use of composite materials in hydraulic components. This entails many benefits, such as weight reduction which is particularly important in aviation. However, new problems arise with the use of new materials. With regard to a hydraulic actuator whose cylinder is made of a composite material, one of the issues is ensuring adequate efficiency, comparable to that of a steel cylinder. The efficiency of a hydraulic actuator is related to friction processes in the structural nodes and to leaks in the cylinder. This paper presents the original results of volumetric, hydraulic-mechanical and total efficiency tests of three designs differing in the material used as a liner of a cylinder. The materials considered as liner were CFRP composite, polyurethane F180. In addition, a steel liner was considered as a reference. Variations in actuator efficiency depending on the liner used were indicated.

Keyword : lightweight hydraulic, cylinder, composite materials, efficiency, aviation, aircraft hydraulic drives

How to Cite
Stosiak, M., Lubecki, M., & Banaś, M. (2025). Comparative efficiency testing of a composite hydraulic cylinder. Aviation, 29(1), 1–10. https://doi.org/10.3846/aviation.2025.23154
Published in Issue
Feb 14, 2025
Abstract Views
67
PDF Downloads
29
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Błażejewski, W., Barcikowski, M., Stosiak, M., Warycha, J., Stabla, P., Smolnicki, M., Bury, P., Towarnicki, K., Lubecki, M., & Paczkowska, K. (2024). A novel design of a low-pressure composite vessel with inspection opening – design, manufacturing and testing. Alexandria Engineering Journal, 91, 442–456. https://doi.org/10.1016/j.aej.2024.01.078

Bogdevičius, M., Karpenko, M., & Bogdevičius, P. (2021). Determination of rheological model coefficients of pipeline composite material layers based on spectrum analysis and optimization. Journal of Theoretical and Applied Mechanics, 59(2), 265–278. https://doi.org/10.15632/jtam-pl/134802

Chawla, K. K. (2012). Composite materials. Science and engineering. Springer. https://doi.org/10.1007/978-0-387-74365-3

Datoo, M. (1991). Mechanics of fibrous composites. Springer. https://doi.org/10.1007/978-94-011-3670-9

El Asswad, M., Al Fayad, S., & Khalil, K. (2018). Experimental estimation of friction and friction coefficient of a lightweight hydraulic cylinder intended for robotics applications. International Journal of Applied Mechanics, 10(8), Article e1850080. https://doi.org/10.1142/S1758825118500801

Elasswad, M., Tayba, A., Abdellatif, S., & Khalil, K. (2018). Development of lightweight hydraulic cylinder for humanoid robots applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(18), 3351–3364. https://doi.org/10.1177/0954406217731794

Gibson, R. F. (2016). Principles of composite material mechanics. CRC Press. https://doi.org/10.1201/b19626

Karpenko, M. (2022). Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems. Aviation, 26(3), 145–152. https://doi.org/10.3846/aviation.2022.17751

Karpenko, M., & Nugaras, J. (2022). Vibration damping characteristics of the cork-based composite material in line to frequency analysis. Journal of Theoretical and Applied Mechanics, 60(4), 593–602. https://doi.org/10.15632/jtam-pl/152970

Karpenko, M., Stosiak, M., Deptuła, A., Urbanowicz, K., Nugaras, J., Królczyk, G., & Żak, K. (2023). Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses. The International Journal of Advanced Manufacturing Technology, 126, 5515–5526. https://doi.org/10.1007/s00170-023-11503-0

Kaw, A. K. (2005). Mechanics of composite materials. CRC Press. https://doi.org/10.1201/9781420058291

Kilikevicius, A., Fursenko, A., Jurevicius, M., Kilikeviciene, K., & Bureika, G. (2019). Analysis of parameters of railway bridge vibration caused by moving rail vehicles. Measurement and Control, 52(9–10), 1210–1219. https://doi.org/10.1177/0020294019836123

Liu, C., & Shi, Y. (2019). Analytical model for the winding process-induced residual stresses of the multilayered filament wound cylindrical composite parts. Materials Research Express, 6(10), 1–17. https://doi.org/10.1088/2053-1591/ab3ef8

Lubecki, M., Stosiak, M., Karpenko, M., Urbanowicz, K., Deptuła, A., & Cieślicki, R. (2023). Design and FEM analysis of plastic parts of a tie-rod composite hydraulic cylinder. Mechanika, 29(5), 358−362. https://doi.org/10.5755/j02.mech.31817

Lubecki, M., Stosiak, M., Skačkauskas, P., Karpenko, M., Deptuła, A., & Urbanowicz, K. (2022). Development of composite hydraulic actuators: A review. Actuators, 11(12), Article 365. https://doi.org/10.3390/act11120365

Mantovani, S. (2020). Feasibility analysis of a double-acting composite cylinder in high-pressure loading conditions for fluid power applications. Applied Sciences, 10(3), Article 826. https://doi.org/10.3390/app10030826

Nowak, T., & Schmidt, J. (2013). Non-linear mechanical analysis of the composite overwrapped cylinder for hydraulic applications. Advances in Manufacturing Science and Technology, 37(4), 31–48. https://doi.org/10.2478/amst-2013-0030

Nowak, T., & Schmidt, J. (2014). Prediction of elasto-plastic behavior of pressurized composite reinforced metal tube by means of Acoustic Emission measurements and theoretical investigation. Composite Structures, 118, 49–56. https://doi.org/10.1016/j.compstruct.2014.07.015

Nowak, T., & Schmidt, J. (2015). Theoretical, numerical and experimental analysis of thick walled fiber metal laminate tube under axisymmetric loads. Composite Structures, 131, 637–644. https://doi.org/10.1016/j.compstruct.2015.06.019

Parker Hannifin Corporation. (2017). Lightraulics ® Composite Hydraulic Cylinders. Catalogue HY07-1410/UK. https://www.parker.com/content/dam/Parker-com/Literature/Accumulator---Cooler-Division---Europe/catalogues/cylinder/composite_cylinder/Composite-Cylinders_1410-UK.pdf

Popov, V., Voll, L., Kusche, S., Li, Q., & Rozhkova, S. (2018). Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force. Tribology International, 120, 376–380. https://doi.org/10.1016/j.triboint.2017.12.047

Rozumek, D., & Bański, R. (2012). Crack growth rate under cyclic bending in the explosively welded steel/titanium bimetals. Materials & Design, 38, 139–146. https://doi.org/10.1016/j.matdes.2012.02.014

Rozumek, D., & Macha, E. (2009). A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Materials Science, 45, 190–210. https://doi.org/10.1007/s11003-009-9179-2

Rozumek, D., Marciniak, Z., Lesiuk, G., & Correia, J. (2017). Mixed mode I/II/III fatigue crack growth in S355 steel. Procedia Structural Integrity, 5, 896–903. https://doi.org/10.1016/j.prostr.2017.07.125

Sanchez-Sobrado, O., Visniakov, N., Bureika, G., Losada, R., & Rodriguez, E. (2024). Effect of the chemical surrounding environment on the physical and mechanical properties of aged thermoplastic polymers. Heliyon, 10(2), Article e24146. https://doi.org/10.1016/j.heliyon.2024.e24146

Scholz, S., & Kroll, L. (2014). Nanocomposite glide surfaces for FRP hydraulic cylinders – evaluation and test. Composites Part B: Engineering, 61, 207–213. https://doi.org/10.1016/j.compositesb.2014.01.044

Solazzi, L. (2019). Design and experimental tests on hydraulic actuator made of composite material. Composite Structures, 232, Article 111544. https://doi.org/10.1016/j.compstruct.2019.111544

Solazzi, L. (2021). Stress variability in multilayer composite hydraulic cylinder. Composite Structures, 259, Article 113249. https://doi.org/10.1016/j.compstruct.2020.113249

Stelling, O., Otte, B., & Petker, J. (2014). Composite high pressure hydraulic actuators for lightweight applications. In Proceedings of the 9th International Fluid Power Conference (IFK) (pp. 167–183). Semantic Scholar.

Stosiak, M., & Karpenko, M. (2024). Synthesis lectures on mechanical engineering. Dynamics of machines and hydraulic systems: Mechanical vibrations and pressure pulsations. Springer. https://doi.org/10.1007/978-3-031-55525-1

Szczepaniak, P., & Jastrzębski, G. (2020). Badania kompozytowego siłownika hydraulicznego do serwomechanizmu wspomagania sterowania śmigłowcem bezzałogowym. Mechanica w Lotnictwie, ML–XIX, 219–260. https://doi.org/10.15632/ML2020/249-260

Szydelski, Z. (1999). Pojazdy samochodowe. Napęd i sterowanie hydrauliczne. Wydawnictwa Komunikacji i Łączności. (in Polish).

Teijin Carbon Fiber Business. (2024). Tenax™ Filament Yarn property. https://www.teijincarbon.com/products/filament-yarn

Toray Composite Material America Inc. (2021). Torayca® carbon fiber selector guide. Toray Composite Materials America.

Ulbricht, A., Gude, M., Barfuß, D., Birke, M., Schwaar, A., & Czulak, A. (2016). Potential and application fields of lightweight hydraulic components in multi-material design. In 10th International Fluid Power Conference (IFK2016) (pp. 463–472). Technische Universität Dresden.

Vacca, A. (2021). Hydraulic fluid power: Fundamentals, applications, and circuit design. John Wiley and Sons Ltd. https://doi.org/10.1002/9781119569145

Wang, Z., Chen, K., & Zhan, C. (2018). Structural development and strength theory research of hydraulic cylinder CFRP Tube. Chinese Hydraulics & Pneumatics, 0(07), 1–7. (in Chinese).

Wypych, G. (2016). Handbook of polymers. ChemTec Publishing.